YOLO v1 原理分析与论文学习

YOLO v1 原理分析与论文学习

YOLO论文链接:You Only Look Once: Unified, Real-Time Object Detection

 YOLO v1工作过程

  1. 将原图划分为 S×S 的网格
  2. 每一个网格会预测B个bounding box和confidence得分,五元组具体为 (x,y,w,h,Pr(Object)IOUtruthpred),其中 Pr(Object) 表示当前位置是一个Object的概率,IOU是预测的box和groundtruth之间的重叠概率。其中x,y是中心坐标。
  3. 每一个网格预测类别概率 Ci=Pr(Classi|Object) .
  4. 预测的时候,将类条件概率和置信度相乘: Pr(Classi|Object)Pr(Object)IOUtruthpred=Pr(Classi)IOUtruthpred

YOLO将输入图像分成SxS个格子,每个格子负责检测‘落入’该格子的物体。若某个物体的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体。每个格子输出B个bounding box(包含物体的矩形区域)信息,以及C个物体属于某种类别的概率信息。Bounding box信息包含5个数据值,分别是x,y,w,h,和confidence。其中x,y是指当前格子预测得到的物体的bounding box的中心位置的坐标。w,h是bounding box的宽度和高度。注意:实际训练过程中,w和h的值使用图像的宽度和高度进行归一化到[0,1]区间内;x,y是bounding box中心位置相对于当前格子位置的偏移值,并且被归一化到[0,1]。confidence反映当前bounding box是否包含物体以及物体位置的准确性,计算方式如下:confidence = P(object) * IOU, 其中,若bounding box包含物体,则P(object) = 1;否则P(object) = 0. IOU(intersection over union)为预测bounding box与物体真实区域的交集面积(以像素为单位,用真实区域的像素面积归一化到[0,1]区间)。

因此,YOLO网络最终的全连接层的输出维度是 S*S*(B*5 + C)。YOLO论文中,作者训练采用的输入图像分辨率是448×448,S=7,B=2;采用VOC 20类标注物体作为训练数据,C=20。因此输出向量为7*7*(20 + 2*5)=1470维。

注:*由于输出层为全连接层,因此在检测时,YOLO训练模型只支持与训练图像相同的输入分辨率。

*虽然每个格子可以预测B个bounding box,但是最终只选择只选择IOU最高的bounding box作为物体检测输出,即每个格子最多只预测出一个物体。当物体占画面比例较小,如图像中包含畜群或鸟群时,每个格子包含多个物体,但却只能检测出其中一个。这是YOLO方法的一个缺陷。

 

YOLO v1网络结构

YOLO的检测网络包括24个卷积层和2个全连接层,如下图所示。

其中,卷积层用来提取图像特征,全连接层用来预测图像位置和类别概率值。

网络卷积层先在imagenet的数据上做了预训练(224×224输入),然后在输入为448×448的图上做检测,由于卷积部分参数和输入图像大小没有关系,所以这么做是可行的。接下来进行fine tune…最后一层有7×7=49个输出,每一个输出是30维,其中30=20(分类)+5×2(回归的bbox)。

YOLO网络借鉴了GoogLeNet分类网络结构。不同的是,YOLO未使用inception module,而是使用1×1卷积层(此处1×1卷积层的存在是为了跨通道信息整合)+3×3卷积层简单替代。YOLO论文中,作者还给出一个更轻快的检测网络fast YOLO,它只有9个卷积层和2个全连接层。使用titan x GPU,fast YOLO可以达到155fps的检测速度,但是mAP值也从YOLO的63.4%降到了52.7%,但却仍然远高于以往的实时物体检测方法(DPM)的mAP值。

YOLO v1 Loss函数

YOLO使用均方和误差作为loss函数来优化模型参数,即网络输出的S*S*(B*5 + C)维向量与真实图像的对应S*S*(B*5 + C)维向量的均方和误差。如下式所示。其中,coordError、iouError和classError分别代表预测数据与标定数据之间的坐标误差、IOU误差和分类误差。

YOLO对上式loss的计算进行了如下修正。

[1] 位置相关误差(坐标、IOU)与分类误差对网络loss的贡献值是不同的,因此YOLO在计算loss时,使用修正coordError。

[2] 在计算IOU误差时,包含物体的格子与不包含物体的格子,二者的IOU误差对网络loss的贡献值是不同的。若采用相同的权值,那么不包含物体的格子的confidence值近似为0,变相放大了包含物体的格子的confidence误差在计算网络参数梯度时的影响。为解决这个问题,YOLO 使用修正iouError。(注此处的‘包含’是指存在一个物体,它的中心坐标落入到格子内)。

[3] 对于相等的误差值,大物体误差对检测的影响应小于小物体误差对检测的影响。这是因为,相同的位置偏差占大物体的比例远小于同等偏差占小物体的比例。YOLO将物体大小的信息项(w和h)进行求平方根来改进这个问题。(注:这个方法并不能完全解决这个问题)。

综上,YOLO在训练过程中Loss计算如下式所示:

其中,为网络预测值, 为标注值。表示物体落入格子i中, 分别表示物体落入与未落入格子i的第j个bounding box内。

注:* YOLO方法模型训练依赖于物体识别标注数据,因此,对于非常规的物体形状或比例,YOLO的检测效果并不理想。

* YOLO采用了多个下采样层,网络学到的物体特征并不精细,因此也会影响检测效果。

* YOLO loss函数中,大物体IOU误差和小物体IOU误差对网络训练中loss贡献值接近(虽然采用求平方根方式,但没有根本解决问题)。因此,对于小物体,小的IOU误差也会对网络优化过程造成很大的影响,从而降低了物体检测的定位准确性。

 

YOLO v1模型训练

1)预训练。使用ImageNet 1000类数据训练YOLO网络的前20个卷积层+1个average池化层+1个全连接层。训练图像分辨率resize到224×224。

2)用步骤1)得到的前20个卷积层网络参数来初始化YOLO模型前20个卷积层的网络参数,然后用VOC 20类标注数据进行YOLO模型训练。为提高图像精度,在训练检测模型时,将输入图像分辨率resize到448×448。

 

YOLO v1 模型特点

YOLO将物体检测作为回归问题求解。基于一个单独的end-to-end网络,完成从原始图像的输入到物体位置和类别的输出。从网络设计上,YOLO与rcnn、fast rcnn及faster rcnn的区别如下:

[1] YOLO训练和检测均是在一个单独网络中进行。YOLO没有显示地求取region proposal的过程。而rcnn/fast rcnn 采用分离的模块(独立于网络之外的selective search方法)求取候选框(可能会包含物体的矩形区域),训练过程因此也是分成多个模块进行。Faster rcnn使用RPN(region proposal network)卷积网络替代rcnn/fast rcnn的selective search模块,将RPN集成到fast rcnn检测网络中,得到一个统一的检测网络。尽管RPN与fast rcnn共享卷积层,但是在模型训练过程中,需要反复训练RPN网络和fast rcnn网络(注意这两个网络核心卷积层是参数共享的)。

[2] YOLO将物体检测作为一个回归问题进行求解,输入图像经过一次inference,便能得到图像中所有物体的位置和其所属类别及相应的置信概率。而rcnn/fast rcnn/faster rcnn将检测结果分为两部分求解:物体类别(分类问题),物体位置即bounding box(回归问题)。

[3]YOLO通过随机放缩+饱和度+曝光度进行数据增强;学习率先是(底->高->低),论文中说先底的目的是防止从一开始就出现梯度不稳定和模型不收敛。

[4]YOLO类似R-CNN和DPM, 当遇到比较大的Object的时候,进行了一下非极大抑制的操作。

 

YOLO v1模型效果

下表给出了YOLO与其他物体检测方法,在检测速度和准确性方面的比较结果(使用VOC 2007数据集)。

论文中,作者还给出了YOLO与Fast RCNN在各方面的识别误差比例,如下图。YOLO对背景内容的误判率(4.75%)比fast rcnn的误判率(13.6%)低很多。但是YOLO的定位准确率较差,占总误差比例的19.0%,而fast rcnn仅为8.6%。

综上,YOLO具有如下优点:

快。YOLO将物体检测作为回归问题进行求解,整个检测网络pipeline简单。在titan x GPU上,在保证检测准确率的前提下(63.4% mAP,VOC 2007 test set),可以达到45fps的检测速度。
背景误检率低。YOLO在训练和推理过程中能‘看到’整张图像的整体信息,而基于region proposal的物体检测方法(如rcnn/fast rcnn),在检测过程中,只‘看到’候选框内的局部图像信息。因此,若当图像背景(非物体)中的部分数据被包含在候选框中送入检测网络进行检测时,容易被误检测成物体。测试证明,YOLO对于背景图像的误检率低于fast rcnn误检率的一半。
通用性强。YOLO对于艺术类作品中的物体检测同样适用。它对非自然图像物体的检测率远远高于DPM和RCNN系列检测方法。

但相比RCNN系列物体检测方法,YOLO具有以下缺点:

识别物体位置精准性差。
召回率低。

 

发表评论